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Quantum Creation of Highly Massive Particles
in the Very Early Universe
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Received January 17, 2001

Quantum creation of very massive particles in the gravitational background of anisotrop-
ically perturbed Minkowski space-time is discussed. In this framework of semiclassical
gravity the quantum mechanically produced heavy particles which made the initial
space-time unstable and ushered into the FRW expansion phase at the Planck order
epoch of the universe can account for the energy density at that epoch. Also, both the
conformal and nonconformal particle-creations in the FRW era of the early universe
after the Planck order epoch are investigated. In this consideration the total particle
number of the observable universe as well as the present value of photon-to-baryon
ratio are obtained in agreement with their accepted values from the observational facts.
The existence of very massive particles at the very early period of the universe is also
discussed here with the suggestion of an observational test.

1. INTRODUCTION

The quantum creation of matter in the very early universe has profound im-
plications in its evolution. Several authors have considered the particle-creations
for different fields in Friedmann space-time and also made calculations of the
vacuum polarization (Birrell and Davies, 1982; Gabal., 1994 and references
therein). The matter sources were treated in these works quantum mechanically
in the framework of semi-classical gravity (Broet al, 1978, 1979a,b, 1980).

In most of these articles, the gravitational backgrounds have only the modelling
character without any correspondence to the actual cosmological scenario. On
the other hand, in other cases of possible realistic situations the created particles
cannot account for the actual energy density of the universe.

From such a quantum creation phenomenon one can have a nonsingular origin
of the universe. It can even influence the geometry of the subsequence period and
can also attend the problem related to the observed aspect of remarkable isotropy of
the universe (Hartle and Hu, 1979; Hu and Parker, 1978; Lukash and Starobinsky,
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1974; Zel'dovich and Starobinsky, 1971). In fact, the initial anisotropy could have
been dissipated by the production of particle pairs in the very early eras of the
universe. In Nardone (1989) we find that the quantum production of very mas-
sive particles in the gravitational background of Minkowski space-time perturbed
anisotropically can be the cause of the instability of that space-time ushering it in
to an expansion phase. To make the Minkowski space-time unstable the masses of
the produced particles should necessarily be more or around 50 times the Planck
mass. Such massive particles might have been created quantum mechanically in the
“zero epoch” of the universe and the produced matter can correspond to the desired
energy density at the Planck order epoch time which marks the beginning of the
expansion phase of the universe (De, 1993b). These particles of the very early era
may be either primordial black holes or known elementary particles whose masses
attain their present values at the present epoch of the universe because of the prop-
erty of epoch-dependence of masses. That is, the particles like electrons, muons,
massive neutrinos, etc., could have masses around 50 times the Planck mass at the
Planck order epochtime of the universe. Presently, the quantum creation of particles
after this Planck order epoch will be considered in the framework of semiclassical
gravity. The matter field is taken here as the scalar field and is treated quantum
mechanically.

We begin with the following section describing, in brief, the basic equa-
tions and the method of solution as applied to the previously considered case
of matter-creation in the anisotropically perturbed Minkowski space-time. In the
next Section 3, both the conformal and the nonconformal particle-creations after
the Planck order time will be discussed. There we shall finally obtain the total
particle number of the observable universe and also the present value of photon-
to-baryon ratio. In the concluding Section 4, some remarks will be made about
the particles of very large masses in the very early era of the universe. Also,
a suggestion is given there on the possible observational test of their existence.
Ir21 the following we shall use the unfit = c=kg = 1 and setG = 1/8nm§l,
ts = G.

2. QUANTUM CREATION OF MATTER

We shall first obtain the field equations for the isotropic space-time which is
the conformal Minkowski space-time related to FRW space (in four dimensions)
with flat spatial sections. The mode decomposition for a scalar field this
space-time is given by

$(x) = / 0K [k U(¥) + & U] (1)
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Here, the modesy can be written in the following separated form (Birrell and
Davies, 1982):
U() = (27) "2 X Q) x(n) @

whereQ(n) is the conformal factor and is the conformal time parameter. Here,
k = |k|, andxk satisfies the following equation

d? 1
— 2% K2+ Q%) {m2 + (& - 2 RO [0e=0 3)
dn 6
with the normalization condition

Xk Xk — Xk OnXk =1 (4)
The above equations are, in fact, derived from the following Lagrangian density

Z(x) = %[—Q(X)]l/z{g“”(x) P(X),c ¢ — [M? + ERX)] %(X)} (6)

with the resulting action

S= / Z(x)d*x (6)

wherem is the mass of the scalar. Herig(x) represents the Ricci scalar aad

is a numerical factor that represents the nature of the coupling between the scalar
and the gravitational fields. The variation of the acttwith respect to the scalar

field ¢ is demanded by the action principle and this can give rise to the following
field equation for the scalar fielgt:

[0+ m* +ERX)] p(x) =0 (7)
where
0¢ = (—9) 20, [(—9)"*g"" 0,¢] (8)

with = x°.
Forthe particularly interesting case of conformal coupling for whieh 1/6,
we have the following equation fog:

d?y
ng + wf(m)xk =0 9
where
wi(n) = K? + m?Q%(n) (10)

In the following we shall consider an anisotropic perturbation (of extremely
short duration) in the Minkowski space-time and find out the energy density
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of the matter created quantum mechanically with the very massive particles
(of masses>50 my,) around the Planck order time. Due to epoch-dependence
of particle-masses, the masses of subatomic particles could have been of the or-
der of more than 50 times the Planck mass around the Planck order epoch times.
In fact, the mass of a particle could have been 53.3 timgsat the epoch time

f = 0.05ty. The result is obtained from the mass relation (De, 1991, 1997)

m = m(1 + 20 H (t)) (11)

wherea = 0.26 x 10723s andm is the “inherent” mass of the particle. It cor-
responds to the present mass of the particle with an extremely high degree of
accuracy. Here, in fact, the Hubble parameter is giverHigy) = (2/3t) for the

FRW matter-dominated expansion phase (De, 1993a), which begins at the Planck
order time due to the instability caused by these heavy massive particles, as shown
by Nardone (1989). The conformal fact(n) for this period of matter-dominated
FRW expansion phase after the Planck order time is given by

() = AS(%)Z (12)

where A is an appropriate constant amd= 2H,*, Ho being the present value

of H. On the other hand, the space-time before the Planck orderftimas an
anisotropically perturbed Minkowski space-time. The line element of this space-
time is given by

3
ds’ = Qz(g)[dgz — 3 L+ hi(8)) (dX )2] (13)
i=1

where

o0 =5(%)

£ being the conformal time parameter correspondiniy from the continuity of
the conformal factors (and also of the corresponding scale factors) we have the
following relations

FLPA=B =3¢ (14)

whererj corresponds tbalso. The epoch time and the conformal time parameters
are related by

20\1/3 t [7\%3 t /7\%®
An = (3t d e=—(= =—|= 15
1= and e=g(5) =4 (%) (15)
The perturbation functionis; (¢) (i = 1, 2, 3) in (13) are specified as follows:
hi(§) = e cos@e” + &) (16)
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where the constantg, 8, ands; are related to the duration of the perturbation.
For a scalar fielgh(x) in this anisotropically perturbed Minkowski space-time the
mode decomposition and the separated form of modes given by (1) and (2) remain
the same but the equation fgg is to be modified to (retaining only the first order
terms inh;)

ka

e {k2+ms22<5) Zh(s)kZ}xk 0 a7)

We follow the method of solution for this equation as given in Birrell and Davies
(1980) who developed an original method of Zel'dovich and Starobinsky (1971,
1977) for the case of small perturbations about a FRW space-time. Apart from
takingh; to be very small compared to unity, one can impose, for simplicity, the
condition

hi(§)=0 (18)

o

i=1

which gives rise to the fact that must differ from one another byr23. It is
evident that the following conditions of the present method of approximation hold
good:

hi(¢) - 0 astf — +o0
(19)
Q2(£) — Q%(00) = Q*(—00) < 0o asé — oo
Then the normalized positive frequency solution of (17§ as —oo is given by
(€)= (o) e (20)
where
w? = K? + m2Q?(400) (21)
Now, with the initial condition the Eq. (17) can be transformed into the
following integral equation:

. 3
1) = ") + ot f Vi) sinfw( — £ @) de (22)
where
3
Vi) = 3 hi(e) K2 (23)
i=1

The Eq. (22) possesses the following solution in the late time region:

X)) = anxd (€) + Bux (€) (24)
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whereay and gk are the Bogolubov coefficients. For this case these are given by

o= 1+ / M V) 18 e (25)
B = —i / T APV (&) dE (26)

For smallVk (&) we can solve (22) by iteration. The Bogolubov coefficients to the
first order inVi (&) are found to be

wo=14 5 / RGLE (27)

__i_ = —2i wE
fo= 5 / ERGL: (28)

since xk(&) = x\"(¢) to the lowest order in(£). The energy density per unit
proper volume, which is related g is given by

1
p = (271)—394 /|,3k|2wd3k (29)

It is evident from the expression & (&) in (23) that only the anisotropy of the
space-time contributes to the energy density. The energy density is, in fact, given
as (Birrell and Davies, 1982)

r'hZ (052 + 132)3/2 m2 2am2
= expy —3a———; (W_ — 30
P~ 1536717208 o2 p{ o+ ﬁz} 3/2’3/2<0,z n 52) (30)

whereW is a Whittaker function and

M = Q(xoo)m = B3(E/7)°m = A3E/7)7°m (31)

Herem is the mass of the particle at the Planck order epoch timed can be
obtained from the mass relation (11). By takimgas the mass of the muon, a
representative particle, &tand using an integral representation of the Whittaker
function it is possible to find an expression for the energy density as (De, 1993b)

00 e—xx5/2
= 2.06 x 10°(1 + p?)%a°m? e-z/aZ/ —— _dx 32
1% ( p ) (814 0 m ( )
where we have set
o= AMm;8° B =pa 8 =78x10%@%/(1+ p?)} (33)

Itis to be noted that the constaatandp determine the “duration” and “frequency”
of the anisotropic fluctuations. With possible choices for them one can find the
energy density numerically. For one such choice; 2, p = 1, the energy density
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atf is given by
p =28 x10'my, (34)

After the epocH the expansion phase of the universe began due to the instability
caused by the very massive particles. In fact, Nardone (1989) has shown that
instability of Minkowski space-time corresponding to a global fluctuati,

that is, for the scale fact@(t) given by

a(t) =1+ 4(t), (35)
shows up as soon as
Km? > 28872 (K =87G) orm>533my (36)

The expansion phase after the epdahas the matter-dominated FRW universe
which continued upto the transition epagh= 0.26 x 10-23s, when the particles
became relativistic and contributed to the radiation energy density. In fact, after
this epoch the radiation era with standard cosmology set in. The energy density is
then given by

p= (})Zp@ (37)

and this density at the transition epoetis fully contributed from the radiation
energy density at that epoch. Thus, it can be calculated and by using the standard
relation one can also find the universe temperature at the epoéhese are

given by

pler) = 6.14x 10Pcm*  T(w) =552 10?2 cm (38)

These results are in good agreement with the results that are calculated from the
standard cosmology.

Now, the perturbation functiorts (&) can be found for the specific values of
the parametera and p given above. These are given by

2
(E) — o (t/0.907 t _
hi(£) = e~ /0% COS{(o_gf) +8.} (39)

The amplitude of the perturbation functions are damped for0.9t. That is, the
anisotropic fluctuation of the Minkowski space-time died out after the epoch
The fluctuation was dominant fdt| < 0.9f. This dominant “duration” of the
“fluctuation era” depends on the parameter-values which also determine the energy
density. Thus, the duration is related to the energy density. Thus, the duration of
the anisotropically perturbed Minkowski space-time for such a short period, as
described above, could produce particles with massesmy.fevident from the

mass relation (11)) that contributed to the matter energy densityAgfain, this
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energy density dtdetermines the radiation energy density at the transition epoch
a (and consequently, at the late time of the universe) correctly. It is here seen that
the “zero” epoch (the cosmological time-origin) of the present universe, given by
& = 0=t, corresponds to the maximum amplitudes of the perturbation functions
and the universe is free from initial singularity.

3. PARTICLE CREATION AFTER PLANCK ORDER EPOCH

In De (1993a) the era after the Planck order epoch{iima matter-dominated
FRW expansion stage of the universe. The conformal Minkowski space-time re-
lated to this era has the conformal factor given in (12). The corresponding scale

factor of FRW universe is
3t\ %3
R(t) = A(—) (40)
T

For the periodf < t < a, we have from (11)

4oam 2

M~ 20MH(t) = —n
A3y3

Therefore, we get
4am
mQ(n) = — forp <n< na
n

wheren, is the conformal time parameter corresponding to the epochutirmbe
Eq. (9) becomes

dek

—5 + o =0

dr 20 (41)
2,y L2, 16xm R

wi(n) =k*+ > forn =7

with the normalization condition foxy given by (4). For nonconformal particle-
creation, that is, for the quantized scalar field with arbitrary coupling in a nonsta-
tionary isotropic gravitational field, the equation fgr follows from (3) which
can be written as follows:

d?xx

a2 + Q¥ (mMxx =0 (42)

n

where

Q%(n) = wi(n) +d(n) forn > 7
Q"(n) (43)

atn) = (6 ~ s




Quantum Creation of Highly Massive Particles 2075

For both the cases the normalized positive frequency solutiopfasn — —oo
is given by

xe'(n) = 2w) V2 elon (44)
where
1602m?
=K+ =
n

In fact, the space-time before the conformal tim&ds Minkowskian with a con-
stant conformal factor given in the previous section. Tlygs) = 0 andQ?(y) =
wZ(n) = w?. The Egs. (41) and (42) for the conformal and nonconformal cases
respectively can be written as the following integral equation:

4 1 /7 .
1) = 1)+ = [ V(e sinto(n — ) de (45)
@ Jj
Here,V (n) for the two cases are respectively
Vo) = mPIEG) - 9] = 16— ) (46)
and
PP Y A _h)1
V(77)_160zm(f72 772) 12(5 6)172 47

In the late time region the Eq. (45) possesses the solution (Birrell and Davies,
1982).

X n) = onxi(n) + o™ () (48)

where the Bogolubov coefficiendg and gy are given by

ak=1+ifmxwwmvmuumdn
n

~ (49)
po= =i [ @Vt dn
n
From (48) we can find, by using (44)
i_ dXI?Ut(U) _ efiwn 13 e+iwn
o dg *k (2w)12 k (2w)H2
Consequently, it follows that
out i Xm?ut(n) e+iwn
— = 26k——— 50
xR = o =6 = 2y (50)



2076 De

Therefore, we get

2 d
2 802 = | + Xgn
i OUI* Ut
{ out( ) (77) out*( ) (7])}
Cl)
d
e ]

[because of the normalization condition (4)]
Thus, we arrive at the following expression fgx|?:

1 dek

2 _
1Bkl = > dn

a2l | - ; )

This formula may be compared with the spectral quasiparticles density, related
to unit volume, given by the squared modulus of the Bogoliubov transformation
coefficient in the diagonalization procedure of the quantized field Hamiltonian in
creation-annihilation operators (Gréb al., 1994).

Now, the correctly normalized exact solutions of the Egs. (41) and (42) for
Xk can be written as

1 .
x(n) = 5 €72 () 2H P k) (52)
where
2 1 272
vi=2- 160°m (53a)
and
1 _ 1
2= _16’m? —12( £ - = 53b
vi=g m 3 6 (53b)

respectively for the conformal and nonconformal cases. Héf®,is a Hankel
function of the second kind. That this solution (52) is normalized according to (4)
can be verified by using the following formula

4ievm

HP() - H 00 — HP 00 HE00 = 45

wherev =ib is purely imaginary. This formula, in fact, can be deduced from
the Wronskian of the pair of Hankel functiot$™(x) and H®(x), which is
equal to (-4i /rx) and by using the following integral representationsH§t(x)
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andH®(x):
2 g vmil2 poo
HO(x) = . / e*hich vt dt (54a)
Tl 0
2 g vmil2 poo
HO(x) = - =—— / e XcNtch vt dt
Tl 0
for—-1< Rev< 1, x>0 (54b)

(Gradshteyn and Ryzhik, 1980). It is to be noted that the solution (52) is consistent
with the condition to be satisfied in order to have an adiabatic vacuum a reasonable
definition of a no-particle state as— +o0. This condition is, in fact, that thath

order adiabatic approximaticmEA) to xx should satisfy

1 .
(A) —Ikn 55
S ST (55)
for largek or n (for details see Birrell and Davies, 1982). It is pointed out above
thatv = ib is purely imaginary. In fact, by using the present mass of a muon
(the representative particle) we findn = 0.416 (in the unitc = h = 1), and
consequently from (53a,b) it follows that

p?2 = —2.519 (56a)
and
p?2 = —-0.519—- 12 < 0 foré >0 (56b)

for conformal and nonconformal cases respectively.
From the solution (52) fow () (n > 7 > 0) one can findx2"(). This is
given as

by using an asympotic formula for the Hankel functidf?, which is

) 2\ . vt 7@
H(kn) ~ | — expy —i[kn — — — — for large|kn| (58)
mkn 2 4
With this solution fory2“(7) we can find out from (51) the following expression
of | B«|? for the conformal case:
2 _ (0 — k)2
Bl” = =~ (59)
Itis interesting to note thagy|? is independent of the value ofr b and therefore,
for nonconformal case we have the same expression (59pf3t Also, we see
that|Bx|? vanishes ak becomes large because— k for largek.
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Now, the number of particles created in the Lagrange volume by the gravita-
tional field until the momeny is

N() = %m)n(n) (60)
where the number densityn) is given by
__ 1 [T 2
") = 5oz [, € oK IA (61)

Here, the conformal factaR(n) = R(t) is given by (12) and (40). We can now
calculate the total particle numbklir for largen.

1 [e ]
N = —2/ k? dk |B|?> for largen (62)
2w 0
For largen, | B«|? is given by (59) and consequently we have
1 [®k 8 [am\)’
N=_—" — (w—k?dk= — [ — 63
znZ/O 2o @79 3n2(f;> (63)
From (15), it follows that
Aj = (3D and Ag, = (3r%) (64)
Consequently,
;\] ’t‘ 1/3
— = (—) =10" (sincef = 0.05ty) (65)
Na o
Also,
2 2\ 13
o 3 3 .
R(e) = Q(no) = A3<n—> =— = T<_> (using (64 and (65))
T Na n\«
Therefore,

1 o 1
— = R3 —= = —
P (“)< f ) 2703

and we have, from (63), the total particle numbeas
8am®
812t
As discussed in De (1993a) the expansion phase of the very early universe
after the epoch timé changed to a radiation-dominated FRW expansion stage
with standard cosmology at the epoehIn De (1999), the early universe was
considered in the framework of modified general relativity originally proposed by

Rastall (1972) and later by Al-Rawaf and Taha (1996a,b). There it was shown that
the evolution in the erd («) is a mild inflation with the scale factor proportional to

N = R3(«) (66)
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the epoch time. This mild inflation was also shown to have turned off automatically
and transited into the radiation era with the usual cosmology after the epoch time
«. In this connection it is to be noted that the expressiomfQ () given above is

valid upto the epoch time which correponds to the conformal time parameter

Now, it will be shown that after the epoch time when the universe is radiation-
dominated FRW universe with the conformal factor

() = bn (67)
corresponding to the scale factB(t) = (2bt)2, there is no quantum creation
of particles by the gravitational field. For this purpose it is convenient to employ
the Hamiltonian diagonalization procedure. If we consider the conformal particle-
creation then the formula fgpx|? is given by

|BkI? = —(|8nXk|2 + g xxl?) = 5 (68)

2wy (n) 2
On the other hand, if nonconformal particle production is considered then the
same formula (68) for the spectral quasiparticle density givergbly remains
valid with a “changed” concept of particles in this nonconformal case (Bezerra
et al, 1997). There, in fact8x|? is, by definition, equated to R.H.S. of (68) with
the “switched off” external field in the general expression for it in the €agel /6
and, of course, with the replacementaf(n) by Q(n). Thus, for nonconformal
case

|Bcl? = W)uaﬂxkﬁ + Q%(n) Ixxl?) — % (69)

For the conformal factor (67), we hagén) = 0 and hence
2
Q*(n) = wi(n) =K+ m (bn + ﬁ) (by using the mass relation (11))

Consequently, fon > 5, we have
Q*(n) = wi(n) = K* + M?b%y (70)

(In fact, atn = n,, by, = 2a/n, and asy > n,, by > 2a/n).

Thus, we get the same equation fqrfor both the conformal and noncon-
formal cases. Also, the expressions [fé|? are the same for these cases. Now, in
Birrell and Davies (1982) the exact solution fgy for the case witho(n) given
by (70) has been given. For large xk(n) has been found to be

x(n) = (2Mbjn|) /2 g7 mer 2 (71)
(n > 0, therefordn| = n, n large)

—imby?/2

1 - 1
0= Gty 5|
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Therefore, for large,

1
———— >0
16(mb)2n*
Thatis, there is no massive particle-creation in this radiation era after the conformal
time parametey, or equivalently after the epoch timeThus, the particle-creation
occurs only in{, «). In the consideration of particle-creation for the peritid,
xx(n) for largen has been regarded a8"'(»). In fact, around the conformal time
parameter, (thatis, around the cosmological tireg, the asymptotic formula for
the Hankel function remains valid because of the fact that

kn, = kr;(%) ~ m(%"‘) — 0 (10)

Now, the scale factor in (66) can be obtained by using the standard cosmological
invariant

1Bl =

RT = RyTo=118x 10”°u, 1<u< 18 (72)

whereRy andTy are the present scale factor and the universe temperature, respec-
tively. They are given by

Ry=10%ucm, Tp=118cm? (73)

The cosmological invariant (72) is valid after the epoch timesince thereafter
the standard cosmology follows.

Now, from (38) and (72), we can find the scale factor at the epodhis
given by

R(a) = 2.14 x 1CPu cm (74)

Consequently, from (66) we find the total particle numiienf the created particles
from the gravitational field. It is given by (using (65) and valuerof given in the
previous section)

1.5x 10®°< N < 8.6 x 10® (75)

This particle number at the epoettorresponds to the total particle number at the
present epoch of the universe as it remains constant afterwards. This humber is in
agreement with the accepted value of the baryon number of the present universe
(Kolb and Turner, 1990). Also one can compute the photon-to-baryon ratio at the
epocha from the radiation energy density and the universe temperature at that
epoch, as given in (38). From the standard relation
T
n,=__-T3 76

the photon number density, at the epoch is found to be

n,(a) = 4.08 x 10°" cm™3 (77)
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On the other hand, the particle number density at the epoishobtained from
(74) and (75). It is given by

Nm(e) = 1.53 x 10°" cm™3 (78)

Consequently, we have at the epoch time

n

—~ =266x 10%° (79)
Nm

As standard cosmology follows after the epachthis ratio remains constant

afterwards and gives its present value.

4. CONCLUDING REMARKS: PARTICLES
WITH VERY LARGE MASS

We have discussed the creation of heavy particles in the classical nonstationary
space-times, that is, the anisotropically perturbed Minkowski, and FRW space-
times. The quantum creation of particles from vacuum in the gravitational field is
regarded as the “creation” of the universe at the Planck order epoch after which the
matter-dominated “creation era” and subsequently (after a transition epoch) the
usual radiation-dominated era follows. We have found that the created particles can
give the total particle number and the photon-to-baryon ratio of the present universe
in agreement with the accepted values of them. In an article (De, 2001) we have
also found the specific entropy of the present universe from a phenomenological
consideration of the very early universe with bulk viscosity in the framework of
full casual thermodynamics and it is in good agreement with the accepted value.

The created particles with very large mass may either be known elementary
particles such as muons, electrons, and massive neutrinos or the primordial black
holes. The masses (of the order of Planck mass) of the elementary particles reduce
to their present values at the present epoch of the universe owing to their epoch-
dependence. Grib (1989) has discussed the quantum effects of vacuum polarization
in early FRW space-time, which give rise to an effective change of the gravitational
constant. Such a change in gravitational constant leads to the possibility of creation
of particles with macroscopic masses to the order of the mass of the observable
universe or some effective mass equivalent to its entropy. Subsequent change of
the gravitational constant compels these particles to explode as black holes and his
assertion is that only particles with microscopic masses can be created from the
vacuum inthe present era because of the present value of the gravitational constant.
Thus, no big bang is possible now. Also, Safiriger cats, observers and other
macroscopic bodies cannot be created from the vacuum quantum mechanically at
the present era. Only in the quantum era of the universe, when the gravitational
constant is small enough, Sdidiiger cats may be observable. With the change
of the value of the gravitational constaB@t the universe becomes macroscopic
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and classical. In Grilet al. (1994) the quantum creation of massive patrticles in
strong field has also been discussed. In there, finite expressions for the density of
created particles were obtained with the use of the method of diagonalization of
the instantaneous Hamiltonian. The created particles are real and not virtual as the
gravitational field acts as the energetic reservoir.

The interesting factis that Grib (1989) obtained the following relation between
the massn of the created particles and the effective gravitational congant

1 1 m?

687G 87G | 28812 (80)

whereG is the modern value of this constant. It is apparent that small valGe of
makes the masa of the created particles large. Itis also clear from the uncertainty
relationAEAt > h that the large mass can be created from vacuust is much

less than the “modern” value of Planck time. In fact, for snt&lbne can have
small Planck timep, ~ GY2 Thus, it is possible for gravity to remain classical
even fort < t,, ~ G¥2. This fact justifies the present consideration of quantum
creation of particles of Planck order masses from classical gravity around the
Planck order time. Even the creation of heavier particles is possible at an earlier
epoch of the universe from the classical gravity. From (79) and the relation for
epoch-dependence of mass given in (11) which ist fer «,

m = 2amH(t) = 0.832H (t) (81)
we get
1 1 (0.832FP(H(t))?
8rG ~ 81G 28872

SinceH (t) = 2/3t for the matter-dominated FRW era of “creation” we find

1 ,(0832)° 1 0832
876 (367rt) &, " 36t
Thus, we see that the epoch time of the creation of particles with large masses is
of the order of the “effective,” that is, the “changed” Planck time when the gravity
can be regarded as classical. This is because of the chaf@geue to vacuum
polarization effect. Thus, whatever large may be the mass of the created particles
the gravity might be considered as classical at the creation epoch of these particles.
These particles, as pointed out above, may be primordial black holes or even the
known elementary particles such as muons, neutrinos, etc.

The epoch-dependence of particle-mass seems to be very encouraging for the
question raised by Dicke and Peebles (1979) in respect of the beginning of the
universe as a “quantum fluctuation” wikn—* ~ 1 whereK = Gnﬁ/hc(mp being
the mass of the proton). In fact, in our framewd¢k* ~ 1 (in the unith = ¢ =
ks =1, Gmgl ~ 1 and since at the Planck tinig the proton massn, ~ my,).

The generation of the present large valueof! is possible because the mass of

ort~0.05t, (82)
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the proton decreases from its Planck-scale value to its modern value at the present
epoch. Itis also mentioned here that the GUT and SUSY theories require particles
with such large masses (neutrinos) at the early universe. The epoch-dependence
of mass admits all such Planck-scale massive particles.

Parker (1989) pointed out the possible existence of particles with masses
of the order of Planck mass (0.28,) in the very early universe (at the Planck
time ty) in his discussion of possible anomalous decay of the neutral pion into
gravitons. There it is supposed that a massive neutral particle should appear as an
interpolating field in the divergence of an axial current, which contains gravitational
and electromagnetic anomalies. If the mass of the decaying particle is of Planck-
order (0.28my,) then the gravitational decay rafe (that is, for the decay of
70 at rest into a pair of gravitons) becomes the same order in magnitude as the
electromagnetic decay rale, of 7° (that is, forr® — 2y). In fact, the ratio of
these decay rates is given by

4

() )

Iem 36ra? Mpe¢
Here,« is the fine structure constant. Now;if goes through a state of interpo-
lating 7° field which is regarded as a “cluster” of muon—antimuon or neutrino—
antineutrino pair having epoch-dependent masses then we can have very large
massm = 0.555my, at the Planck timé,,. Thus, the interpolating cluster field (a
neutral particle field) having such a very large mass in the very early period of
the universe gives rise to a significant decay raterfodecaying into a pair of
gravitons. This gravitational decay of via the anomaly, as discussed by Parker
(1989), should result in a nonthermal cosmic gravitational wave background at a
frequency characteristic of the rest energy of the decaying patrticle. It is expected
that in the future progress of gravitational wave detection one can have a possible
observational test for the large mass of the particle due to its epoch-dependence by
studying the nature of the resulting gravitational wave from such decays, if they
exist, in the early universe.
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